Neutrophil Extracellular Traps May Augur Severe COVID-19

These webs of chromatin and proteins, released by immune cells to control microbial infections, could serve as a therapeutic target in coronavirus infections.

alakananda dasgupta
| 6 min read
neutrophil extracellular traps NETs coronavirus covid-19 pandemic sars-cov-2 innate immune response immunity pathogen elastase chromatin DNA

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: An immunofluorescence microscopy image of neutrophils (DNA labeled in blue) expelling NETs (neutrophil elastase stained green) in the presence of serum from a COVID-19 patient
JASON KNIGHT, YOGEN KANTHI, YU ZUO

In March this year, two University of Michigan physicians spotted a striking similarity between an autoimmune disease they had been studying and COVID-19. Both conditions appeared to involve blood clots in arteries, veins, and the microvasculature, rheumatologist Jason Knight and cardiologist and vascular medicine specialist Yogen Kanthi observed. Because a release of neutrophil extracellular traps (NETs), webs of chromatin and proteins flung from immune cells, underlies the excessive clotting seen in the autoimmune disease, known as antiphospholipid syndrome (APS), they decided to study whether NETs could be relevant to COVID-19 as well.

The research team used serum samples collected at admission from 50 patients with a confirmed diagnosis of COVID-19 based on a PCR test, and measured their levels ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • alakananda dasgupta

    Alakananda Dasgupta

    Alakananda Dasgupta is a freelance science journalist based in New Delhi, India, who contributes to The Scientist. She is a medical doctor and a pathologist by training. In 2018, she combined her interests in science and writing and became a science writer. She has done research previously in the field of immunology and is currently writing a book on the subject.

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo