New Culprit for Parkinson’s?

Scientists use human stem cells to show that nuclear defects may play a role in Parkinson’s disease, and suggest a way to reverse the problem.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Altered nuclear morphology within brain tissue sample of Parkinson’s patient with a mutation in LRRK2 (right), as compared to cells of a healthy, age-matched control (left). Image courtesy of Merce Marti and Juan Carlos Izpisua Belmonte"There’s a new suspect in the search for the causes of Parkinson’s disease—deformities in the nuclear membrane of neural stem cells. Scientists observed the same defects, caused by a single gene mutation, in brain tissue samples from deceased Parkinson’s patients, suggesting that nuclear deterioration—and the mutation that drives it—could play a role in the pathology of the disease. The study, published today (October 17) in Nature, also shows that correcting the mutation reverses this phenotype, pointing to new ways to treat this cause of neurodegeneration.

“I don’t recall anyone ever suggesting this as a major phenotype [for Parkinson’s], so that’s really quite a big new direction for the field,” said Mark Cookson, a neuroscientist at the National Institutes of Health in Bethesda, Maryland, who did not participate in the study.

Parkinson’s disease has traditionally been attributed to a loss of dopamine-generating neurons, which leads to the degenerative muscle control that is characteristic of the disease. But Parkinson’s also causes many other sensory problems, which cannot be explained by a dopaminergic mechanism.

Over the past 5 years, several groups have shown that disruption of the structure of the nuclear envelope—the lipid bilayer that separates nucleus from cytoplasm—is correlated with aging and certain age-related pathologies in the human brain, though the precise ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH