New Dengue-Detecting Antibodies

Researchers uncover a class of antibodies that may confer immunity to different serotypes of the dengue virus.

Written byMolly Sharlach
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

A reconstruction of dengue virus serotype 2 in complex with a human antibody fragmentEMBL-EBI, WANWISA DEJNIRATTISAI ET AL.A study of antibodies from the blood of patients infected with dengue virus has revealed a group of antibodies that recognize a unique envelope dimer epitope (EDE), which spans two protein subunits on the viral surface. Antibodies to EDE effectively neutralized all four dengue serotypes in cell culture experiments, an international team led by researchers at Imperial College London reported today (December 15) in Nature Immunology. The finding could guide strategies to develop a broadly protective vaccine against dengue, a mosquito-borne virus that infects about 400 million people per year.

Although only about 25 percent of people infected with dengue develop symptoms, the disease can lead to severe, and potentially lethal, hemorrhagic fever. Dengue is a growing problem in both developing and developed countries. Designing vaccines has been a long-standing challenge because of the unstable structure of the virus and the differences among its four serotypes.

“The shell of the virus is made up of a rather beautiful array of these envelope proteins all stacked together,” study coauthor Gavin Screaton of Imperial College London said during a press briefing. “The antibody actually recognizes the junction between two of these proteins, so it will only recognize the protein when it’s made on the virus.”

Screaton and his colleagues amplified sequences encoding the antibodies from the B ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies