New Gecko-Inspired Adhesive

Flexible patches of silicone that stick to skin and conduct electricity could serve as the basis for a new, reusable electrode for medical applications.

Written byJef Akst
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, BIZMACFor years, researchers have recreated the microscopic hair-like pillars on gecko feet that, through atomic forces known as van der Waals’ interactions, allow the animals to scurry up walls and across ceilings. Such gecko-inspired adhesives could have a variety of applications, including medical bandages, but materials scientist Seokwoo Jeon at the Korea Advanced Institute of Science and Technology (KAIST) and colleagues wanted to apply these materials to create a novel wearable electrode.

The team created the microscopic pillar design by pouring a mix of conductive carbon nanotubes, graphene nanopowder, and a silicone known as polydimethylsiloxane into a mold shaped like a series of 15 µm golf tees and letting the elastomer cure for two hours at 120 °C. The resulting 4-inch by 4-inch square patch can be attached and removed from skin 30 times without losing its stickiness, and the patch retained its electricity-conducting ability even when stretched by up to a third of its length, the researchers found. Sticking the patch on the arm of a volunteer and wiring it to an electrocardiogram (ECG) recorder, the researchers could monitor the person’s heartbeat, even when his arm was underwater for more than a minute. When submerged, the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH