New Piece of a Mysterious Channel

Researchers have nailed down yet another component of the mechanotransduction complex responsible for relaying signals from hair cells in the ear.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A bundle of stereocilia from a rat earFLICKR, ZEISS MICROSCOPYFor decades, scientists have been trying to pin down the channel in ears’ hair cells that converts mechanical energy from sound waves to an electrical message in the brain. Yet for all the work numerous labs have put toward identifying this so-called mechanotransduction channel, it has remained out of reach. Scientists have now identified another piece of the puzzle, a protein called TMIE that is essential for mechanotransduction and that localizes to just the right spot in the cell. Their results were published in Neuron last week (November 20).

“This new paper locks down that TMIE is involved in mechanotransduction,” said Peter Barr-Gillespie of Oregon Health & Science University who did not participate in the study. What remains unknown, however, is whether TMIE is an accessory to the pore-forming part of the channel or actually part of that elusive conductance pathway.

The basic structure of hair cells includes a finger-like protrusion called a stereocilium. Each stereocilium is connected to its neighbor stereocilium by a “tip link,” an extracellular filament that triggers the activity of the mechanotransduction channel when the tip link moves in response to sound waves coursing through the cochlea. At one end of the tip link is the protein cadherin 23; at the other end—adjacent to the channel—is the protein protocadherin 15.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies