New T-cell epitope math

Posttranslational protein fragment splicing can generate many more epitopes than thought

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

When predicting T-cell epitopes from a protein—a useful technique for cancer and vaccine research—it has been generally thought that theoretically chopping the proteins into eight- to ten-amino acid fragments would give all its possible epitopes. But in the January 15 Nature, Ken-ichi Hanada and colleagues from the National Institutes of Health have discovered that the posttranslational splicing of protein fragments can generate new epitope variants and suggest that there are far more possible epitopes than previously thought (Nature, 427:252-256, January 15, 2004).

“We started by looking for proteins on kidney cancer cells that would be recognized by the immune system,” said James C. Yang, principal investigator of the study, who together with Hanada and colleagues had previously cloned a human T cell (C2 cytotoxic T-lymphocytes, or CTLs) that killed cancer cells overexpressing fibroblast growth factor-5 (FGF-5).

“[We] wanted to proceed to find the specific nine or ten amino acids of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • David Secko

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo