New Vistas For Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance spectroscopy now standard in chemistry laboratories, is also fast becoming part of the technologic repertoire of biochemists, geologists, materials scientists, and even food scientists and farmers. In the early years of this analytical tool, its applications were largely confined to the physical sciences. Now, however, several major advances have fine-tuned and, at the same time, expanded the capabilities of NMR, so that today the technology is proving valuable in a

Written byRicki Lewis
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Nuclear magnetic resonance spectroscopy now standard in chemistry laboratories, is also fast becoming part of the technologic repertoire of biochemists, geologists, materials scientists, and even food scientists and farmers. In the early years of this analytical tool, its applications were largely confined to the physical sciences. Now, however, several major advances have fine-tuned and, at the same time, expanded the capabilities of NMR, so that today the technology is proving valuable in a wider range of scientific disciplines, from the purely academic to the highly practical. For example, NMR spectroscopy can be used to reveal structural information on such diverse substances as volcanic glass, soil, drugs proteins, polymers, chocolate, cookies, and explosives.

The technology, developed in 1946, was introduced commercially by Varian Associates of Palo Alto, Calif., in 1953. The technique is based on the fact that several common elements, including 1H, 13C, 31P 29 and Si, have a physical ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH