Algorithm Designs Robots Using Frog Cells

Scientists carve the shapes from piles of frog cells, like a sculptor building a statue.

Written byEmma Yasinski
Published Updated 4 min read
frog robot

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: A “manufactured organism” built from embryonic frog cells
SAM KRIEGMAN

Cells extracted from a frog embryo can be sculpted to create new shapes and carry out unique functions in a structure that’s not-quite-organism and not-quite-machine, researchers report today (January 13) in PNAS.

“My first reaction to the article was: Holy moly, this is potentially huge,” Pamela Lyon told The Scientist in an email. Lyon is a cognitive biologist at the University of Adelaide who was not involved in the study but is collaborating on a different project with Michael Levin, a developmental biologist at Tufts University and a senior author on the study.

The researchers designed and built so-called xenobots that could locomote across the bottom of a petri dish. They also designed structures that could manipulate and transport other objects. When several designs were housed together, they began to exhibit living robot-like features including “collective behaviors” such as orbiting ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control