Armored CAR T Cells Break Through Immune Suppression in Solid Tumors

Researchers determined the safety and antitumor ability of genetically engineered CAR T cells that circumvent immune suppression in a prostate cancer phase I clinical trial.

Written byJennifer Zieba, PhD
| 3 min read
A wrecking ball destroying a malignant cell as a 3D illustration
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

When developing chimeric antigen receptor (CAR) T cell therapy, researchers take T cells from a patient’s blood and engineer them to target specific antigens presented on cancer cells. These cutting-edge therapies have successfully fought blood cancers, killing the cells that they target. However, they are less effective at treating solid tumors due to the solid tumor microenvironment (TME), which suppresses the body’s immune system.

In a recent study published in Nature Medicine, Joseph Fraietta, a professor at the University of Pennsylvania, and his colleagues found a way to “armor” CAR T cells, giving them the ability to get past the immunosuppressive TME found in lethal metastatic castration-resistant prostate cancer.1 “I've always wanted to do something aggressively translational,” said Fraietta. “It's always about how do we move into human trials to make a therapy that's really going to help cancer patients?”

One of the hallmarks of the immunosuppressive microenvironment is the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jennifer Zieba, PhD headshot

    Jen earned her PhD in human genetics at the University of California, Los Angeles. She is currently a project scientist in the orthopedic surgery department at UCLA where she works on identifying mutations and possible treatments for rare genetic musculoskeletal disorders. Jen enjoys teaching and communicating complex scientific concepts to a wide audience and is a freelance writer for The Scientist's Creative Services Team.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH