Gut Microbes Linked to Neurodegenerative Disease

Bacteria in the intestine influence motor dysfunction and neuroinflammation in a mouse model of Parkinson’s disease.

Written byAbby Olena, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Gut microbes can initiate activation of microglia, which leads to the neuroinflammation that is characteristic of Parkinson’s disease.CALTECH/S. MAZMANIAN LABMany people with Parkinson’s disease have digestive symptoms like constipation years before they have neurological symptoms, and scientists have found differences in the gut microbiome compositions of patients with Parkinson’s disease and healthy controls. But whether and how gut microbes contribute to the pathology and symptoms of the disease has been an open question.

In a study published today (December 1) in Cell, a team led by Timothy Sampson and Sarkis Mazmanian of Caltech demonstrate that gut microbiota promote neuroinflammation and motor deficits in a mouse model of Parkinson’s disease. The researchers also identify a possible mechanism for the influence of intestinal microbes and on the development of the disease in mice.

“It’s a beautiful study,” Justin Sonnenburg of Stanford University School of Medicine, who did not participate in the work, told The Scientist. “It’s really a first in establishing that gut microbes can not only contribute, but appear to play a causal role in neurodegenerative disease in this mouse model,” he added.

Sampson, Mazmanian, and colleagues used transgenic mice that overexpress human α-synuclein, the protein that forms the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH