Impact of Running Reaches Marrow to Spark Bone Growth in Mice

A study offers a new explanation for how exercise strengthens bones and the immune system.

Written byEmma Yasinski
| 3 min read
bone marrow exercise mouse osteolectin growth factor mechanical forces progenitors running exercise

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Deep imaging of bone marrow in a mouse femur showing that osteolectin-expressing cells (red) are around arterioles (white) but not sinusoids (green), a different type of blood vessel in the bone marrow.
CHILDREN’S MEDICAL CENTER RESEARCH INSTITUTE AT UT SOUTHWESTERN

Mechanical forces from running and walking that are transmitted along blood vessels in marrow induce the growth of new bone and immune cells in mice, scientists reported in Nature on February 24. The study is the first to demonstrate that mechanical forces can influence cellular growth and differentiation in the bone marrow, according to the authors, and provides a possible new explanation for how exercise strengthens bones and the immune system.

It’s well known that aging weakens bones and running can help strengthen them. “The way that’s understood to work is the mechanical forces are thought to act on the bone itself. And the soft bone marrow inside your bones ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • emma yasinski

    Emma is a Florida-based freelance journalist and regular contributor for The Scientist. A graduate of Boston University’s Science and Medical Journalism Master’s Degree program, Emma has been covering microbiology, molecular biology, neuroscience, health, and anything else that makes her wonder since 2016. She studied neuroscience in college, but even before causing a few mishaps and explosions in the chemistry lab, she knew she preferred a career in scientific reporting to one in scientific research.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo