Researchers Fuse Mouse Chromosomes in Scientific First

The findings will likely help elucidate the effects of chromosome fusions, which can cause disease but have also contributed to evolution.

Written byNatalia Mesa, PhD
| 4 min read
A karyotype of chromosomes mostly stained blue with one stained red and green
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

For the first time, researchers have fused two mouse chromosomes together in vitro, resulting in living mice with new karyotypes. The new technique, detailed in a study published today (August 25) in Science, can help study chromosomal evolution and may also aid research into the detrimental health effects of chromosomal fusions in humans, experts say.

“[The researchers] now have this beautiful toolkit. . . they can do a lot of really clever CRISPR engineering,” Harmit Malik, an evolutionary biologist at the Fred Hutchinson Cancer Center in Seattle who was not involved in the study, tells The Scientist. “It’s a tour de force . . . a lot of the questions that we thought were not possible to address in a genetically tractable way are now completely genetically tractable.”

Most species have a fixed number of chromosomes, the tightly coiled, threadlike structures that organize and segregate a cell’s DNA during cell ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies