An implantable wheel-like hydrogel Geneva drive uses a motorized magnet to move independently. A Geneva drive is an intricate mechanism used in the mechanical watchmaking industry that allows precise, consistent movement.SAU YIN CHINThe approach: Researchers have devised a technique to produce implantable microdevices made entirely of biocompatible hydrogels, according to a study published this week (January 4) in Science Robotics. And they used one such device to effectively target chemotherapy directly to bone tumors in a mouse model of osteosarcoma.
“Traditional implantable devices are made of silicon or metal, and there are certain manufacturing processes that you would use to make devices out of those materials,” coauthor Samuel Sia of Columbia University in New York City told The Scientist. “But they don’t work on biological materials which are much softer, and so we had to develop our own methods.”
Sia and colleagues generated and assembled several layers of nontoxic hydrogel polymers. By manipulating the length of the polymer chain, which changes the hydrogel’s mechanical and diffusive properties, the researchers were able to manufacture and assemble gears, gates, scaffolds, and posts into a variety of tiny machines. The addition of iron nanoparticles into parts of the devices meant the researchers could use a magnet outside of ...