Next Generation: Biological Pacemakers

Direct reprogramming of cardiac muscle cells into pacemaker cells gives pig hearts back their rhythm.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, GUIDO GERDINGThe technique: Injecting pig hearts with the gene for transcription factor TBX18 converts muscle cells into pacemaker cells that can restore missing heartbeats, according to a paper published today (July 16) in Science Translational Medicine. The technique may soon be applicable to patients who need to have their own electronic pacemakers removed.

“This is an exciting preclinical advance that makes the prospect of a biological pacemaker closer to reality,” said Jonathan Epstein, a professor of cardiovascular research at the University of Pennsylvania who was not involved in the study. “The work is also fascinating and promising because it shows that transdifferentiation or direct reprogramming—that is, changing one cell type into another by delivering specific genes—may lead to new medical therapies sooner than expected,” he added.

The significance: Electronic pacemakers have been used to regulate patients’ heartbeats for more than 50 years and are “generally very reliable” said Eugenio Cingolani, director of the Cardiogenetics-Familial Arrhythmia Clinic at the Cedars-Sinai Heart Institute in Los Angeles, who led the new study. However, they are not entirely without problems. “Like any ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo