Next Generation: Breathing Nanotubes

Flexible nano-sized tubules that self-assemble could be a step forward for dynamic nanostructures and perhaps drug delivery.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The device: Flexible self-assembled nanotubes have arrived. Researchers at Seoul National University used crimped macromolecules that are hydrophobic on one side and hydrophilic on the other to create rings that, in aqueous solution, stack of their own accord, creating nanotubules that expand and contract in response to changing temperature. They published their technique today (September 20) in Science.

Although the molecules fit together easily, they’re not connected by covalent bonds, “which endows the rings with flexible diameter through sliding motion between the molecules,” lead author Myongsoo Lee explained in an email. Lee and his team could prompt this behavior by adjusting the temperature, causing the nanotubule interiors to fluctuate in size by 3 to 4 nanometers. The nanotubes expanded as temperatures dropped and contracted as their environment heated, creating a temperature-dependent response “similar to a pulsating blood vessel,” explained Lee.

The hollow nature of the nanotubules also has potential benefits. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH