Next Generation: Cellular Nanothermometer

Quantum dots, typically used in imaging, also relay temperature changes within a cell.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Quantum dots - small semiconducting nanocrystals - can produce a rainbow of colors depending on their size.FLICKR, ARGONNE NATIONAL LABORATORY

THE DEVICE: Commercially available quantum dots are nano-scale semiconductors that shift color in response to changes in temperature. The dots have two layers—an inner cadmium selenide core, and an outer zinc sulfide shell. Being biocompatible, researchers have used quantum dots as an alternative to fluorescent dyes to label and track cellular components, primarily in vitro.

Now, taking advantage of the tiny quantum dots' sensitivity to temperature, Haw Yang at Princeton University and his colleagues at the University of California, Berkeley, are repurposing them as an array of thermometers to use inside cells. They inserted the dots into mouse fibroblasts and measured temperature changes in various parts of the cell as they adjusted the temperature.

“We were asking whether the intracellular temperature response is homogeneous or ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH