Next Generation: Ear-Powered Batteries

Researchers use the electric potential of a guinea pig’s inner ear to harvest enough energy to run a tiny sensor.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Guinea pig cochlea. The CELL: An Image Library.Device: Researchers have for the first time harvested the energy of the inner ear to power a small sensing device. The electric potential of the cochlea operates like a biological battery and is critical for transforming sound pressure waves into the electrical signals sent to the brain. Now, scientists have developed a chip that can harness this electrical energy without interfering with normal hearing, according to their report, published today (November 11) in Nature Biotechnology.

The strategy is “original,” said Michael Holzinger, a chemist at Université Joseph Fourier in France, who was not involved in the project. Many other devices designed to extract power from living organisms use enzymes to convert catalytic energy into electrical energy, but the new chip “just steals a little bit of energy the body produces itself.”

What’s New: The spiraling cochlea of the inner ear is where physical pressure is modified into electrochemical signals. There are two fluids inside the inner ear, separated by a series of tight junctions, and each has a different ion concentration—setting up an electric potential of up to 100 mV.

In order to demonstrate the principle that the inner ear’s energy could be tapped without interfering with hearing, Konstantina Stankovic, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research