Next Generation: Nanoparticles Augment Plant Functions

The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors.

Written byDaniel Cossins
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Near infrared flourescence imaging shows carbon nanotubes (orange) inside a leafJUAN PABLO GIRALDO AND NICOLE M. IVERSONThe technique: Researchers have boosted the photosynthetic activity of plants by delivering carbon nanotubes into chloroplasts, the plant-cell organelles that house the molecular machinery that converts solar energy into sugars.

A team led by Michael Strano, a chemical engineer at MIT, showed that single-walled carbon nanotubes (SWNTs) coated with single-stranded DNA infiltrate the lipid envelope of extracted plant chloroplasts and assemble alongside photosynthetic proteins. The same thing happened when the SWNTs were delivered into living Arabidopsis thaliana leaves through microscopic pores known as stomata.

The researchers then demonstrated that photosynthetic activity was more than three times higher in in chloroplasts containing SWNTs than in controls. While the precise mechanism is not entirely clear, the authors proposed that SWNTs increase the amount of light that is captured by photosynthetic molecules.

As part of this study, published today (March 16) in Nature Materials, the researchers also showed that nanoparticles laced with cerium oxide reduced concentrations of reactive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies