Next Generation: Nanoparticles Augment Plant Functions

The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors.

Written byDaniel Cossins
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Near infrared flourescence imaging shows carbon nanotubes (orange) inside a leafJUAN PABLO GIRALDO AND NICOLE M. IVERSONThe technique: Researchers have boosted the photosynthetic activity of plants by delivering carbon nanotubes into chloroplasts, the plant-cell organelles that house the molecular machinery that converts solar energy into sugars.

A team led by Michael Strano, a chemical engineer at MIT, showed that single-walled carbon nanotubes (SWNTs) coated with single-stranded DNA infiltrate the lipid envelope of extracted plant chloroplasts and assemble alongside photosynthetic proteins. The same thing happened when the SWNTs were delivered into living Arabidopsis thaliana leaves through microscopic pores known as stomata.

The researchers then demonstrated that photosynthetic activity was more than three times higher in in chloroplasts containing SWNTs than in controls. While the precise mechanism is not entirely clear, the authors proposed that SWNTs increase the amount of light that is captured by photosynthetic molecules.

As part of this study, published today (March 16) in Nature Materials, the researchers also showed that nanoparticles laced with cerium oxide reduced concentrations of reactive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH