Next Generation: Robotic Eye

Researchers create a robotic eye that mimics real muscle movement.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The device: As a proof-of-concept model, researchers at the Georgia Institute of Technology have mounted a camera in a system that acts like real muscles, allowing the camera to mimic the delicate movements of the eye. While traditional systems of robotic movement (called actuators), like motors or pneumatics, are rigid, graduate student Joshua Schultz and supervisor Jun Ueda used piezoelectric materials—elastic ceramics—to create a system that is more flexible, and thus more human-like, a goal of robot builders looking to improve human-robot interactions.

Piezoelectric materials expand or contract when electrical impulses are applied, but the displacement is usually uselessly small. But by combining many small stacks of materials into a larger array, with each system nested inside another, Schultz and Ueda built a device that is small and flexible. Different stacks of piezoelectric units are activated individually, allowing the researchers to selectively trigger more or fewer units to direct movement, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Hayley Dunning

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio