Next Generation: Robotic Eye

Researchers create a robotic eye that mimics real muscle movement.

Written byHayley Dunning
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The device: As a proof-of-concept model, researchers at the Georgia Institute of Technology have mounted a camera in a system that acts like real muscles, allowing the camera to mimic the delicate movements of the eye. While traditional systems of robotic movement (called actuators), like motors or pneumatics, are rigid, graduate student Joshua Schultz and supervisor Jun Ueda used piezoelectric materials—elastic ceramics—to create a system that is more flexible, and thus more human-like, a goal of robot builders looking to improve human-robot interactions.

Piezoelectric materials expand or contract when electrical impulses are applied, but the displacement is usually uselessly small. But by combining many small stacks of materials into a larger array, with each system nested inside another, Schultz and Ueda built a device that is small and flexible. Different stacks of piezoelectric units are activated individually, allowing the researchers to selectively trigger more or fewer units to direct movement, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies