FLICKR, MILOSZ1The technique: The average charge-coupled device (CCD) camera mounted on a fluorescent microscope can take images every 100 milliseconds (ms). But what if a fluorescent protein being studied moves faster than that? A new phase-manipulation technique developed by a group of engineers at Rice University in Houston, Texas, can now resolve the dynamics of such fast-moving proteins without the need for an expensive, faster frame-rate camera. The group described its optical hack last month (October 24) in The Journal of Physical Chemistry Letters.
The researchers “have developed a new method to extract single-molecule dynamics that are 20 times faster than the timing imposed by [CCD] camera frame rates,” Julie Biteen of the University of Michigan, who was not involved in the research, wrote in an email to The Scientist. “This is important because in my lab, for instance, we consider the dynamics of proteins inside living cells with the understood limitation that we are mainly restricted to following membrane-bound or DNA-bound molecules. A method like this [new one] would allow us to measure and understand the fastest motions of, for instance, free proteins.”
The new approach “is totally compatible with all the existing methodologies [of super-resolution microscopy] and in particular all the existing equipment, so it’s just an ...