Light-activated gene expression produces protein pores that connect two synthetic cells, allowing the passage of ions (left). When printed in a 3-D tissue–like material, the cells transmit an electrical signal under illumination (right).MICHAEL J. BOOTH
The device: Researchers at the University of Oxford, U.K., have engineered a soft, tissue-like material, built from hundreds of DNA-containing synthetic cells, that can transmit an electrical signal, according to a study published today (April 1) in Science Advances. The expression of genes in each “cell”—a 3-D-printed water droplet surrounded by a single layer of lipids—is light-activated, giving the researchers precise control over the behavior of the material.
“It’s really beautiful work,” said Sheref Mansy, a biochemist who builds cells from scratch at the University of Trento, Italy, and was not involved in the research. “It’s fantastic to be able to show the ability to arrange these synthetic cells so precisely, with communication between the different droplets.”
Each lipid-encased droplet has a volume of 50 ...