No Mo’ Slow Flow

Tools and tricks for high-throughput flow cytometry

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

The assay setup used by the J. Paul Robinson lab at Purdue University Cytometry Laboratories to screen compounds for mitochondrial toxicity. PURDUE UNIVERSITY, MARK SIMONS

In the world of high-throughput screening, it’s all about efficiency: how many compounds can you test, at what cost, and using how little in the way of materials? In such an environment, cell-free and cell-based microtiter plate assays, such as ELISA and cell imaging, typically hold sway, as these are relatively cheap, low-volume, and amenable to automation.

One technology that has not usually been associated with high-throughput screening is flow cytometry, which traditionally has been long on content—the amount of data points possible per cell—but short on throughput—the number of samples that can be run in a day. But that, says J. Paul Robinson, director of Purdue University Cytometry Laboratories, is changing. As a screening platform, Robinson says, flow cytometry “is starting to gain some ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jeffrey M. Perkel

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours