On display

Molecular reagents that bind to specific proteins with high affinity are valuable tools in the endeavour to understand protein function. In the Early Edition of Proceedings of the National Academy of Science, Wilson et al. describe how a method based on mRNA display can be used to identify ligands with higher affinity than those selected using the phage display technique. The new technique generates polypeptides that are linked via a puromycin moiety to their encoding mRNAs. Wilson et al. demons

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Molecular reagents that bind to specific proteins with high affinity are valuable tools in the endeavour to understand protein function. In the Early Edition of Proceedings of the National Academy of Science, Wilson et al. describe how a method based on mRNA display can be used to identify ligands with higher affinity than those selected using the phage display technique. The new technique generates polypeptides that are linked via a puromycin moiety to their encoding mRNAs. Wilson et al. demonstrate that the limitations of non-constrained linear peptide libraries can be overcome by increasing the complexity (the diversity) of the library and the length of the polypeptides. Using an ultra-high complexity library of 1013 random peptides, each 88 amino acids long, they selected 20 different aptamers which bound to a protein target with dissociation constants as low as 5 nM. Such an approach therefore has advantages over antibody production or phage ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA