One Receptor, Two Ligands, Different Responses

Host and bacterial ligands that interact with the same cell-surface receptor induce different activities in human macrophages.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

MacrophageWIKIMEDIA, NIAIDMacrophages detect and kill pathogens, but also recognize and repair damage to host tissues. How the cells determine which response is required, however, is somewhat of a mystery. Now, researchers at the University of Oxford studying the macrophage toll-like receptor 4 (TLR4), which interacts with both bacterial lipopolysaccharide (LPS) and host protein tenascin-C, show that the two molecules trigger different pathways and proteins in the macrophages that govern contrasting responses. The findings were published yesterday (August 30) in Science Signaling.

“This is a very interesting paper. It addresses a big overall question of how does the immune system distinguish between infection and non-infectious tissue damage,” said immunologist Cynthia Leifer of Cornell University College of Veterinary Medicine in Ithaca, New York, who was not involved in the study. “The overall conclusion is that, through one innate immune receptor, with two different ligands, you can trigger two different types of outcome.”

LPS, also known as endotoxin, is a molecule found in the outer membrane of many different types of bacteria. Through its interaction with TLR4, LPS induces a strong inflammatory reaction in humans. Tenascin-C, on the other hand, is a protein found in the extracellular matrices of various host tissues. “There is not very much of it ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo