Opinion: Evolving CO2-Hungry Crops

Breeding plants that can convert more carbon dioxide to food could help feed a growing population.

Written byLewis H. Ziska and Mark Howden
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Wikimedia, Joe DIn 2007 and 2008, due in part to rapidly rising energy costs and climatic extremes, the world experienced a sweeping food crisis, with food riots observed in more than 30 countries. In 2010 and 2011, unprecedented drought in Russia reduced the global supply of wheat, with social and political ramifications for wheat importing countries around the globe. Last summer’s extensive drought in the United States, the world’s largest grain exporter, suggests that food supply will, once again, continue to be an immediate and global concern.

Since the “green revolution” of the 1960s increased crop production around the world, agricultural science has served as a bulwark against global hunger. But demands have been relentless, and there is a clear need for more. More food for a global population that, in 2011, exceeded 7 billion. More for the additional 2 billion people that will join the population by 2040. And more cereal crops for biofuels production, and more grain for livestock production.

The constraints to meeting such demands are many. Urbanization removes half a million hectares of arable land from global crop production each year; competition for water supplies between industry and agriculture leads to diminished availability for irrigating crops; and the cost of fossil fuels, necessary for growing, transporting, processing, and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH