NATALIA TRAYANOVAThere is no question that computer modeling is poised to transform medicine, although its effects on health outcomes are yet to be seen.
Over the last decade, computer modeling has helped researchers generate increasingly sophisticated virtual organs. For example, virtual hearts that model complex interactions within the organs—from molecules to cells and tissues and back again—are poised to deliver breakthroughs at the patient bedside.
Building a personalized virtual heart involves constructing a geometric representation of the organ using magnetic resonance imaging (MRI) or computed tomography scans. From there, a computational model of the heart’s inner workings is overlaid on this structure.
How could a patient-specific heart model be used in the clinic? My colleagues and I are testing whether such models can help physicians make better treatment decisions for patients with a life-threatening fast heart rhythm called ventricular tachycardia. Cardiac ablation, a treatment that permanently eliminates the arrhythmia, ...