Opinion: Model Organ

How computer modeling can improve cardiac care

Written byNatalia Trayanova
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

NATALIA TRAYANOVAThere is no question that computer modeling is poised to transform medicine, although its effects on health outcomes are yet to be seen.

Over the last decade, computer modeling has helped researchers generate increasingly sophisticated virtual organs. For example, virtual hearts that model complex interactions within the organs—from molecules to cells and tissues and back again—are poised to deliver breakthroughs at the patient bedside.

Building a personalized virtual heart involves constructing a geometric representation of the organ using magnetic resonance imaging (MRI) or computed tomography scans. From there, a computational model of the heart’s inner workings is overlaid on this structure.

How could a patient-specific heart model be used in the clinic? My colleagues and I are testing whether such models can help physicians make better treatment decisions for patients with a life-threatening fast heart rhythm called ventricular tachycardia. Cardiac ablation, a treatment that permanently eliminates the arrhythmia, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH