Courtesy of Cellomics | |
Confocal microscopy, a decades-old technique,1 has experienced a relatively recent explosion in popularity. The technology's greatest impact has been felt in the life sciences, where its ability to generate crystal-clear images of biological structures and to monitor changes in living samples in real time enables functional analysis of biological processes.
The key advantage of the confocal principle is the ability to collect high-resolution, serial optical sections from thick specimens. That stands in stark contrast to traditional microscopic techniques. In conventional widefield optical microscopy, secondary fluorescence can interfere with the resolution of the features of interest, particularly in specimens more than 2 µm thick. Confocal microscopy addresses this issue by positioning a pinhole in front of the detector to remove out-of-focus light.
Confocal microscopes usually form images by scanning one or more focused beams of light (such...