Organic Fertilizers Rife With Microplastics: Study

Converting biowaste to plant food is an overlooked source of tiny plastic pollutants, researchers say.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

compostISTOCK, MAERZKINDThe recycling of biological waste from homes and businesses to make fertilizer, either through composting or fertilization, is a source of microplastic pollution, according to a study published today (April 4) in Science Advances. The particles were present despite efforts to sort and sieve out plastic contaminants either before or after the waste was processed, the authors note.

“The recycling of organic waste through composting or fermentation and subsequent application on agricultural land is, in principle, an environmentally sound practice to return nutrients, trace elements, and humus to the soil,” the study authors write. “However, most household and municipal biowaste is contaminated by plastic material.”

Microplastics, which the new study defines as plastic particles smaller than 5 mm, result from the breakdown of plastics, and are pervasive both on land and in the oceans. While the extent of their environmental and health effects is not clear, studies have found they’re detrimental to the health of organisms such as earthworms and rodents, and that they make their way into human food supplies.

In the new study, researchers at the University of Bayreuth in Germany ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo