Phase I of HapMap Complete

International consortium publishes most comprehensive catalog of human genetic variation to date

Written byDavid Secko
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Researchers have released a public database of human genetic variation, designed to help scientists study the effects of small genetic differences on health, reports an international consortium in this week's Nature. The findings suggest that only 260,000 to 470,000 single nucleotide polymorphisms (SNPs) are needed to capture all the common genetic variation in the populations studied, despite the fact that there are an estimated 10 million common SNPs in the human genome.

The HapMap, launched in 2002 by the International HapMap Consortium, is a catalogue of millions of SNPs that maps the natural organization of the human genome in blocks called haplotypes. "The HapMap is a resource that ushers in a new era of disease studies by effectively allowing all the common variation in the human genome to be compared," said Peter Donnelly, from University of Oxford, UK, and one of the authors of the paper.

However, in the past, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH