Planarians enter the genomic era

© 2005 Center for Development BiologyResearchers at the University of Utah are among the first to use large-scale genetics to study the planarian Schmidtea mediterranea, which contains a genome thought to contain insight into adult stem cell pluripotency and tissue regeneration.1Because the organism does not reproduce sexually, it cannot be studied using traditional genetic techniques. But by using bacterial-fed RNA interference against 1065 planarian genes, the study "effectively makes an

Written bySarah Rothman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

© 2005 Center for Development Biology

Researchers at the University of Utah are among the first to use large-scale genetics to study the planarian Schmidtea mediterranea, which contains a genome thought to contain insight into adult stem cell pluripotency and tissue regeneration.1

Because the organism does not reproduce sexually, it cannot be studied using traditional genetic techniques. But by using bacterial-fed RNA interference against 1065 planarian genes, the study "effectively makes an animal that was not accessible to genetic studies accessible," says study coauthor Alejandro Sánchez Alvarado.

Animals were screened for visible phenotypes, such as regeneration defects, light sensitivity or mobility deficits, and for nonvisible defects, such as cellular level changes. Researchers performed 53,400 amputations to observe the worms for regeneration defects. They determined that 240 of the 1065 genes screened generated observable phenotypes following perturbation.

Michael Levin of the Forsyth Institute, Boston, who has worked with the planarian model ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies