Plastic Reefs

Plastic fragments are changing the ecology of the oceans by providing havens for bugs and bacteria.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Microbes pitting the surface of a plastic fragmentZETTLER ET AL, 2013. Many whales, albatrosses, and turtles have been found with plastic junk in their stomachs, while others have become entangled in packaging. These large animals have come to symbolize the growing problem of oceanic pollution. But a number of new studies suggest that floating plastics are also providing a new habitat—the “plastisphere”—for smaller marine residents, from insects to microbes.

Plastics have become the most common type of debris in the seas. Contrary to popular depictions of floating garbage islands, most of this junk consists of tiny fragments no bigger than a fingernail. Although they are small, these pieces can become trapped in large concentrations within circular ocean currents called gyres. Parts of the North Atlantic Gyre, for example, hold more than 50,000 plastic pieces per square kilometre.

“The open ocean is low in nutrients and often likened to a desert. Now, we have these microbial reefs—pieces of confetti-like plastic that are their own ecosystem,” said Linda Amaral-Zettler from the Marine Biological Laboratory in Woods Hole. “We’re concerned about how these pieces are changing the nature of this large body of water.”

Along with Erik ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery