PNNL Team Captures Individual Protein Interactions

Scientists at the Pacific Northwest National Laboratory in Richland, Wash., have used an established technique to observe real-time interactions between single protein molecules for the first time.

Written byAileen Constans
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© 2004 AAAS

includes residues 201 to 321 of WASP, which contains the CRIB domain essential for Cdc42 binding. (Reprinted with permission from P. Nalbant, Science, 305:1615–9, 2004.)

Scientists at the Pacific Northwest National Laboratory in Richland, Wash., have used an established technique to observe real-time interactions between single protein molecules for the first time. Ultimately, the PNNL method – single-molecule photon stamping spectroscopy – will be used to study signaling events in living cells. At present it offers more information about protein-protein interaction dynamics than can be obtained with conventional structural biology techniques such as nuclear magnetic resonance (NMR) and X-ray crystallography.

"Protein conformation fluctuation dynamics is a stochastic process," says lead investigator H. Peter Lu, a staff scientist at PNNL. "Experimentally you have to study this process under physiological conditions, and to be able to follow [it] one molecule at a time, otherwise those stochastic fluctuations will be ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH