Predicting and Overcoming Resistance Using IsoPlexis' Single-Cell Intracellular Proteomic and Metabolomic Analysis Tools

Cancer cells develop resistance to targeted therapies, and their inherent functional heterogeneity makes it difficult for researchers to understand and characterize these resistance mechanisms. IsoPlexis' single-cell proteomics is helping researchers overcome resistance to targeted inhibitors, leading to better strategies and combination therapies.

Written byIsoPlexis
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Abig challenge in the field is that cancer cells develop resistance to targeted therapies, and researchers are striving to understand and characterize how these cancer cells are adapting in response to these therapies. However, the inherent functional heterogeneity in cancer cells makes this challenging. This heterogeneity complicates translating data from genetic profiles or responses into associated functional behaviors or phenotypes. Although cancer cells have been characterized at the genetic and genomic levels, the functional mechanisms impacting protein-driven functional behaviors and activities can only be revealed through singlecell proteomics. IsoPlexis' single-cell proteomics has helped researchers overcome resistance to targeted inhibitors, leading to better strategies and combination therapies.

Single-cell intracellular proteomics and single-cell metabolomics combine to characterize drug resistance in melanoma cells

The constant adaptation of cancer cells poses a great challenge for developing drug-based treatments, as cells that initially respond can quickly adopt drug-resistant states. IsoPlexis’ single-cell proteomics and multiomic technologies ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research