Primates Use Simple Code to Recognize Faces

Researchers could reconstruct the faces a monkey saw from the patterns of neuronal activity in a certain area of the brain.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Real faces that were presented to a monkey, together with reconstructions made by analyzing electrical activity from 205 neurons recorded while the monkey was viewing the faces. DORIS TSAOScientists have hypothesized that individual neurons are responsible for distinguishing individual faces. But now, researchers at Caltech have shown that the brains of macaque monkeys instead use a combinatorial approach to facial identity, in which each face-recognizing neuron responds to a particular aspect of faces.

By defining this combinatorial code, the scientists could reconstruct faces simply by observing neural activity. The study was published today (June 1) in Cell.

“People previously had this notion that neurons are coding specific identities,” says coauthor Doris Tsao of Caltech, but “the neurons are doing something more abstract than that. Each neuron is projecting a different axis. It’s simple and extremely mathematically elegant.”

Tsao and postdoc Steven Le Chang used an online face database to create a “face space” with 50 dimensions, half of which corresponded to facial appearance characteristics, such as skin texture, and half to face shape traits, such as eye height and face width. They used the face space to draw 2,000 random faces.

We “generated space where you could describe ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide