Muscle Master: Angela Dulhunty

Having pioneered the study of muscle physiology in mammals, she uncovered how ion channels enable muscle movement.

Written byAnna Azvolinsky
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

ABOVE: CHRIS THEKKEDAM

For Angela Dulhunty, the main draw of studying cells’ electrical properties was the reward of instantaneous data. Rather than having to wait sometimes days to get the results of a biochemistry experiment, with electrophysiology “you see what is happening in an individual cell in the moment,” says the muscle biology researcher and now emeritus professor at Australian National University in Canberra.

Dulhunty was attracted to learning how muscle works as an undergraduate student studying physiology and biochemistry at the University of Sydney. “Biochemistry in those days was a lot of learning metabolic cycles, which was not as intuitive for me as understanding how the micro-components of tissues and organs inform their functions,” she says.

Dulhunty’s first real lab experience was during her final year as an undergraduate. She was completing her honors thesis, studying how hearing is registered by the ear and translated into electrical signals through ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH