Protein folding

Under specific conditions globular proteins can assume a structure resembling amyloid and prion aggregates.

Written byKenneth Lee
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The characteristic protein aggregates seen in the brains of patients with Alzheimer's or Creutzfeldt–Jakob diseases are caused by the proteins adopting abnormal shapes called amyloid fibrils. In the 8 March Nature, Christopher Dobson and colleagues at the Oxford Centre for Molecular Sciences, UK, report that proteins outside the brain are also capable of assuming abnormal 'amyloid' structures.

In a physiological environment the muscle protein myoglobin is globular and its structure does not suggest a tendency to form amyloid fibrils. But in a screening process in which temperature, pH and buffers were varied, Fändrich et al found a chemical environment — 50 mM sodium borate, pH 9.0 at 65°C — that favoured conversion of myoglobin from its native structure into amyloid fibrils (Nature 2001, 410:165-166). They believe that organisms have evolved safeguards against this protein transition, but ageing or mutational changes could sometimes cause the protective mechanisms to break down.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo