Quality control in the nucleus

Yeast system involving ubiquitin-protein ligase is first described in non-protein synthesis compartment

Written byGraciela Flores
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Researchers have discovered the first protein quality control system in the yeast nucleus. They report in Cell this week that the system involves a ubiquitin-protein ligase that specifically targets four distinct mutant nuclear proteins for destruction by the proteasome.

Protein quality control systems, which fix or rid the cell of unfolded, misfolded, or improperly modified proteins, have long been known to exist both in prokaryotes and eukaryotes. But they have been found only in compartments where protein synthesis occurs: the cytoplasm, the endoplasmic reticulum, and the mitochondria, senior author Dan Gottschling, of Seattle's Fred Hutchinson Cancer Research Center, told The Scientist.

"It largely has been thought that as proteins are being made, they're being sampled and destroyed right during the process of folding and assembly," said Gottschling. "We wanted to find a place where proteins that become old could be recognized and degraded, and the nucleus is the only compartment ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH