Rat olfaction molded early

Study in newborn rodents shows how first exposure to smells alters synaptic development

Written byGraciela Flores
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The odors that newborn rats are exposed to appear to govern the development of synapses that carry information into the rat olfactory cortex, the seat of odor perception, researchers report in Neuron this week.

Kevin Franks and Jeffry Isaacson of the University of California, San Diego, found that in newborn rats, early olfactory experiences caused changes in the relative amounts of two types of glutamate receptors in lateral olfactory tract fibers. Specifically, they observed a decrease in the number of NMDA receptors, which are believed to be important in synaptic plasticity and long-term changes, relative to AMPA receptors, which mediate fast synaptic transmission. The researchers suggest this phenomenon might be associated with "olfactory imprinting," the strong attachment to maternal odors that occurs early in mammalian development.

"The ability of the animal to smell caused downregulation in the number of NMDA receptors," Isaacson told The Scientist. "Very early in rat development, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH