Recognizing the Human Potential

It may be time to reconsider an AIDS vaccine which is more human than viral, triggering the immune system in a way that no other vaccine does.

Written byGene M. Shearer and Adriano Boasso
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

JON KRAUSEAt the beginning of 1991—almost ten years after the cause of AIDS had been identified—researchers thought they might have a vaccine. Evidence from several laboratories suggested that it was possible to develop a vaccine against HIV by inoculating individuals with a crippled version of the virus that could not replicate—a time-tested strategy similar to that used to produce effective measles, mumps, and polio vaccines. In animal experiments, researchers used an HIV-like virus called simian immunodeficiency virus (SIV) which infects rhesus macaque monkeys. Over time, infected monkeys developed AIDS-like symptoms, much like humans. Researchers inactivated SIV, injected it into monkeys, and tested whether the animals were protected against live SIV infection. Most vaccinated monkeys were indeed protected, encouraging AIDS researchers to believe that an effective human AIDS vaccine would soon follow.

However, in October 1991, a brief article was published that sent AIDS vaccine research into a tailspin.[1. E.J. Stott, “Anti-cell antibody in macaques,” Nature, 1991, 353:393, 1991.] Like other labs,[2. E.J. Stott, G.C. Schild, “Strategies for AIDS vaccines,” J Antimicrob Chemother, 37 Suppl B:185-98, 1996.],[3. T. Lehner et al., “Alloimmunization as a strategy for vaccine design against HIV/AIDS,” AIDS Res Hum Retroviruses, 16:309-13, 2000.] E. James Stott’s laboratory had immunized macaques with inactivated SIV, which protected them against subsequent infection with live virus. However, the Stott laboratory included a negative control that was missing from the earlier studies: a second group of monkeys was immunized with just the human host cells that had been used to grow the inactivated SIV, but in this case, with ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies