DESIGN BY ZENGRONG ZHU, KIHYUN LEE AND QING LI. ARTWORK BY TERRY HELMS..Scientists have a fever for genome tinkering, and the latest thing shooting up temperatures is CRISPR. The number of publications referring to CRISPR/Cas technology has mushroomed since its first use as a genome-editing tool in 2012. In a testament to the method’s popularity, a recent guest lecture at Vanderbilt University by CRISPR pioneer and 2015 Breakthrough Prize winner Jennifer Doudna packed a 300-person classroom and a 160-person overflow room—which then itself overflowed, recalls attendee Douglas Mortlock, a research assistant professor at Vanderbilt who blogs about advances in CRISPR technology.
CRISPR (clustered, regularly interspaced, short palindromic repeats) is named for particular DNA loci that are found in many archaea and bacteria. CRISPR works with associated nucleases, including Cas9, to protect the cells from viral infection by inserting short snippets of viral DNA into the CRISPR cassette. By combining the Cas9 nuclease with a short guide RNA that’s custom-designed to bind a specific target, CRISPR/Cas can easily edit any gene you want. Just in the past year, for example, it has allowed researchers to cure a rare liver disease in mice, to excise HIV-inserted genes from human immune cells, and to block HIV from entering blood stem cells. CRISPR/Cas is easier than the other nuclease-based editing technologies, says John Schimenti of Cornell University; scientists are basically ...