Remaking Nature

Synthetic biologists need to work together with conservationists to understand the environmental consequences of this new technology.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

© ARMO.RS/ISTOCKPHOTO.COMThe growth of human populations, the development of new technologies, and the scope of human enterprise mean that the Earth’s systems—and the ways in which people interact with them—are changing faster than ever before. Humans appropriate more than 40 percent of the net energy produced by the world’s plants, consume 35 percent of the energy produced on the oceanic shelf, and use 60 percent of freshwater runoff. In some sense, people are already masters of their environment, engineering it for their own uses. But the human transformation of the planet is now entering a new and categorically different era: the era of synthetic biology.

Proponents of this new field argue that it can improve on the messy, inefficient, and uncertain processes of natural evolution by engineering more reliable and efficient biological systems. Synthetic biology has the potential to revolutionize biotechnology in the energy, medical, and agricultural sectors by creating novel organisms and modifying existing ones. (See “Engineering Life,” here.) More public discussion of the implications of these areas of research is occurring, as engineers and scientists continue to push the frontiers of synthetic biology faster and further.

But what will this relentless pursuit of synthetic biology mean for the natural world and for conservation? The nature and extent of human impacts on the planet have already led to deep questions about the purpose of conservation and the measures of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer