RNA Protects “Naked” Genomes from Retrotransposons

Transfer RNA fragments prevent jumping genes from hopping around in the mouse embryo, when histone methylation can’t do the job.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA, MARIUSWALTERTo protect their genes from being wrecked by retrotransposons, or jumping genes, mouse cells usually employ histone methylation to stop these rogue genetic elements from being transcribed. But how does the genome stay protected in the pre-implantation embryo, when methyl groups are temporarily stripped from cells’ DNA. A new study, published yesterday (June 29) in Cell, finds tRNA fragments are key.

Based on previous studies in fruit flies, Andrea Schorn and Rob Martienssen of Cold Spring Harbor Laboratory thought the answer to what protects vulnerable mouse embryo genomes might lie in small RNAs. To find them, they made some tweaks to the usual techniques. As they explain in their paper, “many small RNA sequencing studies omit RNA fragments shorter than 19 [nucleotides] or discard sequencing reads that map to multiple loci in the genome, thus often discarding reads matching young, potentially active transposons…”

By including smaller fragments in their RNA library and analysis, the authors turned up “very abundant” 18- and 22-nucleotide fragments of tRNAs. Results of further experiments suggested the 18-nucleotide fragments occupy the retrotransposons’ primer binding sites, blocking full tRNA molecules from binding there ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo