RNA Protects “Naked” Genomes from Retrotransposons

Transfer RNA fragments prevent jumping genes from hopping around in the mouse embryo, when histone methylation can’t do the job.

Written byShawna Williams
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA, MARIUSWALTERTo protect their genes from being wrecked by retrotransposons, or jumping genes, mouse cells usually employ histone methylation to stop these rogue genetic elements from being transcribed. But how does the genome stay protected in the pre-implantation embryo, when methyl groups are temporarily stripped from cells’ DNA. A new study, published yesterday (June 29) in Cell, finds tRNA fragments are key.

Based on previous studies in fruit flies, Andrea Schorn and Rob Martienssen of Cold Spring Harbor Laboratory thought the answer to what protects vulnerable mouse embryo genomes might lie in small RNAs. To find them, they made some tweaks to the usual techniques. As they explain in their paper, “many small RNA sequencing studies omit RNA fragments shorter than 19 [nucleotides] or discard sequencing reads that map to multiple loci in the genome, thus often discarding reads matching young, potentially active transposons…”

By including smaller fragments in their RNA library and analysis, the authors turned up “very abundant” 18- and 22-nucleotide fragments of tRNAs. Results of further experiments suggested the 18-nucleotide fragments occupy the retrotransposons’ primer binding sites, blocking full tRNA molecules from binding there ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform