RNA Sequences Don’t Predict In Vivo Transcript Structure

Eukaryotes prevent secondary RNA structures called G-quadruplexes, commonly observed in vitro, from forming in the cell.

Written byCatherine Offord
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

IN A TWIST: Certain guanine-rich regions of the transcriptome can fold up into four-stranded structures called RNA G-quadruplexes that are thought to have harmful effects in living cells. Both eukaryotes and bacteria have evolved mechanisms to keep these structures unfolded, according to a new study. Eukaryotes likely have protein machinery—possibly helicases to unravel the structure (1) and proteins that bind to the transcripts to keep them from reforming (2). Bacteria appear to have depleted quadruplex-forming sequences from their genomes during their evolution.© KIMBERLY BATTISTA

The paper
J.U. Guo, D.P. Bartel, “RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria,” Science, doi:10.1126/science.aaf5371, 2016.

RNA doesn’t lie flat. Interactions between nucleotides can turn sections of transcripts into loops, bends, and knots, some of which have regulatory functions in the cell. It was with these tangles in mind that Junjie Guo, a postdoc in David Bartel’s lab at MIT, developed an in vitro chemical probe to detect folded regions of RNA. “We were trying to identify all the structures that can stably form in vitro,” he says.

Testing the technique on transcripts extracted from mouse embryonic stem cells, Guo found that one particular conformation was unexpectedly abundant: RNA G-quadruplexes—stable, guanine-rich regions folded into four-stranded structures. “Only dozens of [these] ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies