RNA Sequences Don’t Predict In Vivo Transcript Structure

Eukaryotes prevent secondary RNA structures called G-quadruplexes, commonly observed in vitro, from forming in the cell.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

IN A TWIST: Certain guanine-rich regions of the transcriptome can fold up into four-stranded structures called RNA G-quadruplexes that are thought to have harmful effects in living cells. Both eukaryotes and bacteria have evolved mechanisms to keep these structures unfolded, according to a new study. Eukaryotes likely have protein machinery—possibly helicases to unravel the structure (1) and proteins that bind to the transcripts to keep them from reforming (2). Bacteria appear to have depleted quadruplex-forming sequences from their genomes during their evolution.© KIMBERLY BATTISTA

The paper
J.U. Guo, D.P. Bartel, “RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria,” Science, doi:10.1126/science.aaf5371, 2016.

RNA doesn’t lie flat. Interactions between nucleotides can turn sections of transcripts into loops, bends, and knots, some of which have regulatory functions in the cell. It was with these tangles in mind that Junjie Guo, a postdoc in David Bartel’s lab at MIT, developed an in vitro chemical probe to detect folded regions of RNA. “We were trying to identify all the structures that can stably form in vitro,” he says.

Testing the technique on transcripts extracted from mouse embryonic stem cells, Guo found that one particular conformation was unexpectedly abundant: RNA G-quadruplexes—stable, guanine-rich regions folded into four-stranded structures. “Only dozens of [these] ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.

Published In

January 2017

Driving Out Disease

Scenarios for the genetic manipulation of mosquito vectors

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb