Roach Motel Vacancies Explained

Scientists discover why certain cockroaches avoid eating insecticide-containing sugary bait.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

German cockroachWIKIMEDIA, UNITED STATES EPAGlucose is irresistible to most cockroaches and was a standard component of insecticide-laden baits. But these pesky home-invaders have outsmarted humans by evolving glucose-avoiding behavior. And, according to a study published online today (May 23) in Science, the underlying neural mechanism of this behavior is that the roaches find the taste of glucose bitter.

“We’ve known about this form of behavioral resistance for a long time, but there really hasn’t been an explanation as to exactly how this behavioral change occurred,” said Michael Rust, a professor of entomology at the University of California, Riverside, who was not involved in the study. “This is a nice elegant little study that shows there has been a remarkable change in how the bitter and sweet receptors are working in the mouthparts of the cockroach,” he said.

Insecticide-containing sugary baits were introduced in the mid-1980s as a means to eradicate cockroaches without the need for harmful insecticide sprays. But within a decade, problems arose, said Coby Schal, a professor of entomology at North Carolina State University in Raleigh and co-author of the new ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas