Science Snapshot: Mastodons on the Move

These Pleistocene Epoch giants likely traveled great distances each year to reach breeding grounds.

| 2 min read
Close up of mastodon tusk

Jeremy Marble, University of Michigan News

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share
Close up of mastodon tusk with numbers marked on it
American mastodons, like the adult male who bore this tusk discovered in Northern Indiana, would travel hundreds of miles, likely as part of an annual migration to breeding grounds. The markings on the tusk indicate where isotope samples were retrieved.
Jeremy Marble, University of Michigan News


It can be hard to discern the daily lives of extinct species just by looking at fossils, but studying isotopes within their ancient bones can help paint a broader picture. According to a new study published Monday (June 13) in PNAS, American mastodons (Mammut americanum) migrated great distances throughout the year. To uncover this, researchers analyzed isotopes of strontium and oxygen along the length of a tusk from a 34-year-old male mastodon from the Indiana State Museum, which museumgoers affectionally call “Fred.” These isotopes occur in different proportions based on an area’s geology and the time of year, and they get incorporated into mineralized tissues, so they can serve as markers for the habitats animals were in when their bones grew. The recurring patterns of isotopes in the tusk suggested the animal traveled great distances on a regular basis, particularly once it hit adulthood. It ultimately died in what is now northern Indiana after being impaled by another mastodon’s tusk. Based on the isotopes present when it died, the researchers deduced that the animal was at its breeding grounds, and presumably lost its life fighting for a mate.

Keywords

Meet the Author

  • Lisa Winter

    Lisa Winter became social media editor for The Scientist in 2017. In addition to her duties on social media platforms, she also pens obituaries for the website. She graduated from Arizona State University, where she studied genetics, cell, and developmental biology.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit