Second-generation microarrays

Current microarray analysis uses 'chips' containing either 25-residue oligonucleotides synthesized by photolithography or cDNAs placed by robotic spotting. In the April Nature Biotechnology, Hughes et al. describe a microarray technique that exploits an ink-jet printing method and standard phosphoramidite chemistry (Nature Biotechnology 2001, 19:342-347). The ink-jet synthesizer can deliver 25,000 phosphoramidite-containing microdroplets to a 25 x 75 mm glass slide. Hughes et al. examined a larg

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Current microarray analysis uses 'chips' containing either 25-residue oligonucleotides synthesized by photolithography or cDNAs placed by robotic spotting. In the April Nature Biotechnology, Hughes et al. describe a microarray technique that exploits an ink-jet printing method and standard phosphoramidite chemistry (Nature Biotechnology 2001, 19:342-347). The ink-jet synthesizer can deliver 25,000 phosphoramidite-containing microdroplets to a 25 x 75 mm glass slide. Hughes et al. examined a large range of parameters to define conditions for optimized specificity and sensitivity. They found that 60-mer oligonucleotides hybridized at 30-32% formamide gave the best results. The absolute detection limit was approximately 0.1 copies per cell equivalent. The ink-jet arrays were as effective as spotted cDNA microarrays. Moreover, Hughes et al. report that single carefully chosen 60-mer oligonucleotides can be preferable to arrays containing multiple oligonucleotides or cDNAs as they offer maximal specificity. The ink-jet technology provides a very flexible microarray system that can be experimentally ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research