Self-Improvement Through the Ages

A 50,000-generation-long experiment shows that bacteria keep getting fitter.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZEIn 1988, when evolutionary biologist Richard Lenski was an assistant professor at the University of California, Irvine, he started a simple experiment: toss E. coli into a new environment and watch what happens. He wanted to know how reproducible evolution would be, so he put the same strain of the bacteria into 12 flasks with the same simple medium and waited to see how they would evolve. E. coli normally lives in the guts of animals, so the experiment would allow for a way to observe adaptations to a new environment.

After about a year and 2,000 E. coli generations, Lenski and his colleagues published the first results of what they then considered to be a long-term experiment in evolution. Little did they know that 25 years and 50,000 generations later, the experiment would still be chugging along—those 12 flasks representing alternate universes of bacterial existence. “I guess I didn’t view it as [being as] open-ended as it clearly has become, not only as an experiment but in terms of the ability of the organisms to keep improving,” says Lenski.

These experiments provide us with clear evidence that adaptive evolution truly is relentless.—­John Thompson,
University of California, Santa Cruz

In his latest publication on the experiment, Lenski reported that the bacteria continually become more fit. His ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH