Self-Navigating Catheter Designed for Heart Surgery Tested in Pigs

The robotic catheter can guide its own movements within the heart of a live mammal to the site of a leaky valve replacement.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: The robotic cardiac catheter used in the study.
FAGOGENIS ET AL., SCI. ROBOT. 4 EAAW1977 9 (2019)

By gently feeling its way around the walls of a beating pig heart, a self-guiding catheter can find a leaky valve and position itself for a human operator to plug the hole, according to a report in Science Robotics today (April 24). The system’s developers suggest that automating catheter navigation could free surgeons from having to perform this challenging yet routine process, allowing them to focus on the most critical aspects of the surgery.

“Building consistency and reproducibility into [surgical] procedures generally improves [patient] outcomes,” heart surgeon and researcher Michael Reardon of Houston Methodist Hospital who was not involved with the research writes in an email to The Scientist. “Robotic control of the catheter delivery systems that we use for endovascular procedures can help us obtain this goal . . . [and] the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio