Sequence-specific drugs

The mechanism by which heterochromatin mediates the epigenetic gene-silencing events that cause position effect variation (PEV) is not understood. Two articles in the November Molecular Cell from Janssen and colleagues explore the role of repetitive heterochromatin sequences in PEV (Mol Cell 2000, 6:999-1011 and 1013-1024). In the first article, Janssen et al. describe the development of satellite-specific DNA minor groove binding drugs containing pyrrole and imidazole amino acids (polyamides).

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The mechanism by which heterochromatin mediates the epigenetic gene-silencing events that cause position effect variation (PEV) is not understood. Two articles in the November Molecular Cell from Janssen and colleagues explore the role of repetitive heterochromatin sequences in PEV (Mol Cell 2000, 6:999-1011 and 1013-1024). In the first article, Janssen et al. describe the development of satellite-specific DNA minor groove binding drugs containing pyrrole and imidazole amino acids (polyamides). In the accompanying paper they present the dramatic effects observed when these drugs are fed to Drosophila. One of the polyamide drugs that targets AT-rich satellites suppressed PEV in white-mottled flies (a gain-of-function phenotype). However, another of the drugs, which binds to GAGAA satellite sequences, induced homeotic transformations in brown-dominant flies (a loss-of-function phenotype). The authors suggest that both phenotypes can be explained by the ability of these drugs to open up chromatin structures. These drugs are powerful tools for investigating ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH