Sequencing the Underdogs

Transcriptome studies reveal new insights about unusual animals whose genomes have not been sequenced.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Red spotted newtWIKIMEDIA, JASON QUINNThe red spotted newt (Notophthalmus viridescens) could sit in the palm of your hand, but its genome is ten times the size of yours—up to 10 billion base pairs. This daunting amount of DNA has kept this species off the radar of any genome sequencing projects, despite plummeting costs. It has also prevented newts and salamanders from becoming regular model organisms, despite their remarkable and medically-relevant ability to regenerate severed limbs and damaged organs.

Recently, a team of German scientists circumvented the difficulties posed by the newt’s huge genome by sequencing its transcriptome instead—the set of RNA produced from its genes. Since some of an animal’s genome is never transcribed, transcriptomes can often be decoded at a fraction of the cost and effort of a full genome, and the newt results, published last month (February 20) in Genome Biology, are part of a growing trend of using transcriptomes to understand lesser-known species.

The team, co-led by Thilo Borchardt from the Max-Planck-Institute for Heart and Lung Research, sequenced more than 120,000 RNA transcripts from newt embryos and larvae, at least 14,000 of which code for proteins, and found that many proteins associated with regeneration are not found in other animals, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ed Yong

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo